학과소식
총 125건의 게시물
류성주 교수 연구팀,반도체 설계 자동화 분야 Premier Conference ‘DATE 2025’ 논문 채택 (왼쪽부터) 김상연 석박통합과정, 김현민 석사과정, 류성주 시스템반도체공학과/전자공학과 교수 본교 전자공학과 석박사통합과정 김상연, 석사과정 김현민 (지도교수 류성주)이 반도체 설계 자동화 분야 우수 학술대회인 ‘Design, Automation and Test in Europe (이하 DATE) 2025’에서 논문을 발표하게 되었다. 논문의 제목은 "Thanos: Energy-Efficient Keyword Spotting Processor with Hybrid Time-Feature-Frequency-Domain Zero-Skipping"이며, 김상연 석박통합과정생의 주도 하에 김현민 석사과정생이 함께 연구를 진행하였다. 키워드 검출 (Keyword spotting) 기술은 사용자가 특정 명령어를 음성으로 말했을 때 이를 인식하는 기술로, 개인화된 가상 비서나 스마트 디바이스와 같은 분야에서 핵심적인 역할을 한다. 그러나 이러한 키워드 감지 시스템은 항상 활성 상태를 유지해야 하므로 에지 (Edge) 디바이스의 전력 소비에 문제가 발생한다. 특히 기존 키워드 검출 기술에서는 전체 과정 중 전처리 (Pre-processing) 단계에서 상당한 전력을 소모하고 있음이 관찰되었다. 본 연구팀은 음성 신호의 희소성 (Sparsity) 특성을 기반으로 하드웨어 설계를 최적화하여 키워드 감지의 전력 효율성을 획기적으로 향상시켰다. 구체적으로,1) 특징 영역 (Feature-domain, 음성이 발화되는 시간에 대한 영역)에서 낮은 에너지를 갖는 음성 신호가 대부분일 경우 연산을 수행하지 않고 즉시 종료(Early exit)하는 알고리즘,2) 시간 영역 (Time-domain)에서 낮은 에너지를 갖는 영역을 감지하여 연계된 연산을 생략 (Skipping)하는 메커니즘,3) 주파수 영역 (Frequency-domain)에서 낮은 에너지를 갖거나 음성 신호가 아니라고 판단한 부분을 생략 (Skipping)하는 방법을 하드웨어로 구현하였다. 제안한 Hybrid time-feature-frequency-domain Zero-skipping 구조의 개요 이러한 기술을 적용한 ‘Thanos’ 하드웨어 아키텍처는 기존 구조 대비 저지연 (Low latency)과 저에너지소비 (Low energy consumption)를 달성하였다. 한편 DATE는 BK21 및 한국정보과학회가 인정하는 컴퓨터 과학(Computer Science) 분야의 우수 국제 학술대회로 선정된 바가 있다. DATE 2025는 오는 2025년 3월 31일부터 4월 2일까지 프랑스 리옹에서 개최될 예정이다. ▶ 논문제목: Thanos: Energy-Efficient Keyword Spotting Processor with Hybrid Time-Feature-Frequency-Domain Zero-Skipping▶ 저자 정보: 김상연(제 1저자), 김현민(제 2저자), 류성주 교수(교신저자)
2024.11.25
김경환 교수 연구팀,Computer Vision 분야 Premiere Conference ‘WACV 2025’ 논문 채택 ▲ (왼쪽부터) 유지원, 고다미, 이장원 석사과정, 김경환 교수 전자공학과 김경환 교수 연구팀(유지원, 고다미, 이장원 석사과정)이 Computer Vision 분야 Premiere Conference인 WACV 2025에 발표한 논문이 최종 채택되었다. 논문 제목은 ‘CCASeg: Decoding Multi-Scale Context with Convolutional Cross-Attention for Semantic Segmentation’으로, Semantic Segmentation에서 다양한 크기의 context를 효과적으로 캡처하기 위한 CCA(Convolutional Cross-Attention) 기반의 새로운 디코딩 방식인 CCASeg를 제안하였다. CCASeg의 CCA block은 Successive Feature Integration과 Convolutional Cross Attention을 통해 다양한 수준의 정보를 결합하여 객체 간 관계를 효과적으로 학습한다. 또한 다양한 크기의 커널을 통해 local 및 global context를 효율적으로 추출하며, 낮은 연산량으로 높은 효율성을 달성한다. 제안된 CCASeg는 여러 데이터셋에서 기존 SOTA(State-Of-The-Arts) 방법들을 능가하는 성능을 보였다.▲ 논문에서 제안한 CCA Block 구조 ▲ 기존 SOTA 방법과의 성능 비교 한편, IEEE/CVF에서 주관하는 WACV 2025는 2025년도 2월 28일부터 3월 4일까지 애리조나 투손에서 진행될 예정이다. ▶ 논문제목: CCASeg: Decoding Multi-Scale Context with Convolutional Cross-Attention for Semantic Segmentation▶ 저자 정보: 유지원(공동 제1저자), 고다미(공동 제1저자), 이장원(제2저자), 김경환 교수(교신저자, 서강대)
2024.11.11
김성진 교수, 2024년 하반기 삼성미래기술육성사업 ICT 분야 신규 과제 선정 ▲시스템반도체공학과/전자공학과 김성진 교수 본교 시스템반도체공학과/전자공학과 김성진 교수 연구팀의 연구 과제가 2024년 하반기 삼성미래기술육성사업 ICT 분야에 신규 선정되었다. 포항공과대학교의 이지원 교수(반도체공학과)와 공동연구팀을 이루어 “단파장 적외선 대역 TFPD 기반 3D 이미지센서 연구”를 주제로 제안하였으며 2024년 12월부터 2027년 11월까지 3년 간 총 12억원(연평균 4억원)을 지원받는다. 3D 이미지센서는 색상 정보만을 획득하는 일반 이미지센서와 달리 물체까지의 거리 정보를 측정할 수 있는 센서로 주로 라이다(LiDAR, Light Detection and Ranging)로 불리며 전파를 사용하여 거리를 측정하는 레이더와 달리 빛을 이용하기 때문에 거리 정밀도가 높은 고해상도 3D 영상을 얻을 수 있어 각광받고 있다. 다양한 3D 이미지센서 기술 중에서 indirect Time-of-Flight(iToF) 방식은 변조된 빛의 위상 차이를 감지하여 거리 정보를 획득하는 방법으로 성숙된 CMOS 공정 기술을 그대로 활용할 수 있을 뿐 아니라 픽셀 구조가 단순하여 고해상도 3D 영상을 얻기에 가장 좋기 때문에 마이크로소프트, 소니, 삼성전자 등 전세계 유수의 기업들이 개발하고 있다. 하지만 외부 광원에 쉽게 포화되고 악천후 대응성이 낮아 실외 사용이 어렵고 최대 감지 거리가 10미터 이내로 짧은 한계가 있다. 본 연구에서는 상술한 iToF 기술의 단점을 해결하기 위해 Short Wave Infrared (SWIR) 광원을 사용하는 iToF 센서를 개발한디. 특히 SWIR 광원에는 반응할 수 있으나 동작 속도가 느린 양자점 포토다이오드와 SWIR 광원 반응성은 없지만 고속 동작에 최적화된 실리콘 포토다이오드를 결합한 형태의 하이브리드 픽셀 구조를 제안하였다. 더불어 신호 크기에 따라 노출 시간을 자동으로 조절하는 픽셀회로를 하여 최대 측정 거리를 크게 증가시키고자 한다. 삼성미래기술육성사업은 삼성전자에서 2013년부터 1조원의 기금을 마련하여 연구자들이 자유롭게 도전적인 연구를 할 수 있도록 지원해온 사업으로 지난 10년간 우리나라 연구개발사업의 방향을 바꾸는데 큰 기여를 했다는 평가를 받고 있다. 연구의 가치를 결과물의 산출에 두지 않고 아이디어의 창의성과 결과의 파급력에 두고 있어 많은 연구자들의 선망의 대상이 되고 있는 사업이다. 김성진 교수는 이번 연구를 성공적으로 달성하여 3D 이미지센서 산업에서의 게임 체인저가 되기를 기대하고 있다. https://www.samsungstf.org/ssrfPr/newsroom/viewNewsroom.do?idx=845&pageIndex=&searchGubun=C&searchYear=&searchMonth=&searchCondition=&searchKeyword=
2024.10.31
김성진 교수 LiDAR 센서 연구팀, 반도체 설계 올림픽 ‘ISSCC 2025’ 논문 채택 본교 시스템반도체공학과/전자공학과 김성진 교수 LiDAR 센서 연구팀의 연구 결과가 반도체 회로 분야 세계 최고 학회인 ‘국제고체회로학회(International Solid-State Circuits Conference, 이하 ISSCC) 2025’에 선정되었다. ISSCC는 1954년 처음 개최된 집적회로 분야 최고의 국제학술대회로 반도체 회로 분야 학회 중 가장 높은 권위을 가지고 있으며 nVidia, SK 하이닉스, 삼성전자, TSMC 등 관련 분야 세계 최고의 기업에서 3,000명 이상의 참가자가 모이는 이른바 ‘반도체 설계 올림픽’으로 불린다. 해당 논문의 제목은 “An Asynchronous 160×90 Flash LiDAR Sensor with Dynamic Frame Rates of 5-250 fps Based on Pixelwise ToF Validation via Background Light Adaptive Threshold”이다. 이번 연구는 거리 영상을 실시간으로 출력해주는 LiDAR 센서에 관한 것으로 LiDAR는 앞으로 다가올 augmented/virtual reality를 포함하는 메타버스 및 자율주행차량에 필수적인 기술로 각광받고 있다. 본 논문은 모든 픽셀이 동일한 조건에서 동작하는 기존 LiDAR 센서와는 달리 각 픽셀에 들어오는 실외광 정보에 따라 거리 정보의 유효성을 판단하여 동작 속도를 스스로 조절하는 Pixelwise ToF Validation 구조를 구현하고 Dynamic Frame Rate을 시연하였다. 따라서 근거리 물체의 거리 정보는 빠르게, 원거리는 천천히 업데이트되어 LiDAR의 성능을 극대화할 수 있다. 이번 연구는 한국연구재단에서 지원하는 중견연구자 사업(NRF-2021R1A2C2012045)의 지원을 받아 이루어졌으며 울산과학기술원, 솔리드뷰의 연구원들과의 공동 연구로 진행되었다.
2024.10.31
김성진 교수 생체 신호 IC 연구팀, 반도체 설계 올림픽 ‘ISSCC 2025’ 논문 채택 본교 시스템반도체공학과/전자공학과 김성진 교수 생체 신호 IC 연구팀의 연구 결과가 반도체 회로 분야 세계 최고 학회인 ‘국제고체회로학회(International Solid-State Circuits Conference, 이하 ISSCC) 2025’에 선정되었다. ISSCC는 1954년 처음 개최된 집적회로 분야 최고의 국제학술대회로 반도체 회로 분야 학회 중 가장 높은 권위을 가지고 있으며 nVidia, SK 하이닉스, 삼성전자, TSMC 등 관련 분야 세계 최고의 기업에서 3,000명 이상의 참가자가 모이는 이른바 ‘반도체 설계 올림픽’으로 불린다. 해당 논문의 제목은 “A 4.6-µW 3.3-NEF Biopotential Amplifier with 133-VPP Common-mode Interference Tolerance and 102-dB Total Common-mode Rejection Ratio for Two-Electrode Recording System”이다. 이번 연구는 ECG, EEG 등 심장이나 뇌와 같은 중요 장기에서 나오는 매우 작은 생체 신호를 수집하는 증폭기에 관한 것으로 실생활 중에 스마트 워치에서 신체 기능이나 건강 상태를 지속적으로 모니터링할 때 반드시 필요한 기술로 각광받고 있다. 특히 본 논문에서는 두 개의 전극만으로 생체 신호를 모니터링할 때 문제가 되는 전원 전압 간섭 신호를 효과적으로 줄일 수 있는 회로 기술을 선보여 큰 주목을 받았다. 또한 공통 모드 노이즈를 줄임으로써 전극 안쪽으로 보이는 임피던스를 크게 높여 움직임이 많은 실생활에서도 생체 신호를 효율적으로 측정 가능하여 헬스케어 산업에 큰 임팩트를 가져올 것으로 기대된다. 이번 연구는 한국연구재단에서 지원하는 중견연구자 사업(NRF-2021R1A2C2012045)의 지원을 받아 이루어졌으며 울산과학기술원, Univ. California, San Diego (UCSD) 연구원들과의 공동 연구로 진행되었다.
2024.10.31
전영준 석박통합과정(지도교수 홍성완), 반도체 설계 올림픽 ‘ISSCC 2025’ 논문 채택 ▲(왼쪽부터) 전영준 석박통합과정, 홍성완 전자공학과 교수 전자공학과 전영준 석박사통합과정(지도교수 홍성완)이 세계 최고 권위의 반도체 학회 ‘국제고체회로학회(International Solid-State Circuits Conference, 이하 ISSCC) 2025’에서 논문이 채택되었다. ISSCC는 1954년 처음 개최된 회로 분야 최고 국제학술대회로, 반도체 회로 분야 학회 중 가장 높은 권위와 큰 규모를 자랑하며 이른바 ‘반도체 설계 올림픽’으로 불린다. 해당 논문의 제목은 “A Sub-1V, 50mV Dropout LDO using Pseudo-Impedance Buffer with Phase-Margin Improvement Design”이다. 전영준 석박사통합과정생은 반도체 공정 기술의 발전에 맞춰 낮은 입력 전압 조건에서 동작하는 Analog Low Dropout Regulator(ALDO)를 설계하였다. 본 논문은 Rail-to-Rail Pseudo Impedance(RRPB) 구조를 제시하여, 1V 이하의 입력 전압에서 최대 300mA 로드 전류를 제공하면서도 50mV의 낮은 dropout voltage를 갖는 높은 효율을 갖는 LDO를 설계하였다. 이번 연구 성과는 기존 낮은 입력 전압에서 동작하는 Digital Low Dropout Regulator(DLDO)의 스위칭 노이즈 문제를 해결한 구조로, 고정밀 저잡음 전원이 필요한 시스템에서 효과적으로 적용될 수 있을 것으로 기대된다.
2024.10.16
김정헌 석박통합과정(지도교수 홍성완), 반도체 설계 올림픽 ‘ISSCC 2025’ 논문 채택 ▲(왼쪽부터) 김정헌 석박통합과정, 홍성완 전자공학과 교수 전자공학과 김정헌 석박통합과정(지도교수 홍성완)이 세계 최고 권위의 반도체 학회 ‘국제고체회로학회(International Solid-State Circuits Conference, 이하 ISSCC) 2025’에서 논문이 채택되었다. ISSCC는 1954년 처음 개최된 회로 분야 최고 국제학술대회로, 반도체 회로 분야 학회 중 가장 높은 권위와 큰 규모를 자랑하며 이른바 ‘반도체 설계 올림픽’으로 불린다. 해당 논문의 제목은 “A 2A Fully Analog Distribution LDO with Noise Immunity for a SoC”이다. 김정헌 석박통합과정생은 고집적 시스템에서 LDO(Low Dropout Regulator)를 이용하여 전류를 공급할 때 시스템의 특정 부분에서 과도한 열이 발생하는 문제를 해결하기 위해, 시스템 내부에 LDO를 분산 배치하여 전류를 공급하는 Distributed LDO를 연구하였다.본 연구가 기존 연구와 차별화된 점은 기존 연구는 Distributed LDO를 구성할 때 제어 문제와 SoC의 Noise 문제로 인해 Digital LDO에 초점을 맞추어 연구를 진행하였는데, SoC에서 발생하는 노이즈에 둔감하고 제어가 용이한 Analog Distributed LDO를 개발하였다. 이번 연구 성과는 고집적 시스템의 전력 효율성과 안정성을 향상시키는 데 크게 기여할 것으로 기대된다.
2024.10.16
전자공학과 박형민 교수 연구팀, 세계 최우수 인공지능 학회 ‘NeurIPS 2024’ 논문 채택 ▲(왼쪽부터) 전자공학과 신의협 박사과정, 이상윤 석사과정, 김태한 석사과정, 박형민 교수 전자공학과 지능정보처리 연구실 연구팀(지도교수 박형민)이 최우수 인공지능 학회인 ‘Neural Information Processing Systems, NeurIPS 2024’에서 논문을 발표하게 되었다. 전자공학과의 신의협 박사과정의 주도하에 이상윤, 김태한 석사과정이 함께 연구를 진행하였으며, 논문 제목은 “Separate and Reconstruct: Asymmetric Encoder-Decoder for Speech Separation”으로 해당 연구를 통해서 여러 화자가 동시에 발화하는 혼합 음성에서 개별 화자의 음성을 분리하는 새로운 딥러닝 네트워크 구조를 설계하였다. 음성 분리(Speech Separation)는 여러 화자의 음성이 섞인 오디오에서 개별 화자의 음성을 분리해내는 과제이다. 이를 위해서 역할이 구분 되는 분리 인코더 – 재구성 디코더의 비대칭 네트워크를 설계하였다. <분리 인코더 – 재구성 디코더의 비대칭 네트워크를 제안한 SepReformer 네트워크 구조> 연구팀은 기존 음성 분리 분야에서 사용되고 있는 딥러닝 네트워크의 설계에서 실제 음원의 분리가 네트워크의 가장 후반부에서 진행되는 것의 한계점을 고려하여 모델을 디자인하였다. 한편 NeurIPS는 인공지능(AI) 및 기계 학습 분야에서 가장 권위 있는 국제 학회 중 하나로, 매년 전 세계의 연구자와 기업들이 참여하여 최신 연구 성과와 혁신 기술이 발표되고 논의되는 자리이다. GAN, AlphaGo, Transformer, Diffusion 등 인공지능에 큰 영향을 끼친 기술이 해당 학회에서 발표되었다. NeurIPS 2024는 오는 2024년 12월 9~15일 캐나다 벤쿠버에서 개최된다. ▶ 논문제목: Separate and Reconstruct: Asymmetric Encoder-Decoder for Speech Separation▶ 저자 정보: 신의협(제 1저자), 이상윤(제 2저자), 김태한(제 3저자), 박형민 교수(교신저자, 서강대)▶ 데모 페이지: https://fordemopage.github.io/SepReformer/
2024.09.27
[언론보도] 전자공학과 강석주 교수, ‘Nature’지 ‘한국의 주목할 만한 과학자’ 인터뷰 국제학술지 ‘Nature’가 발간한 ‘네이처 인덱스’ 한국 특집호는 한국의 과학 분야에서 두드러지는 신진 과학자들을 인터뷰하였다. 이들은 경쟁이 치열한 한국 과학계에서 어떻게 성공했는지, 연구 초기에 직면한 도전 과제를 어떻게 극복했는지 논의한다. 이를 통해 한국 과학계의 현재 상황과 미래 가능성을 조명한다. 서강대학교 전자공학과 강석주 교수는 ‘한국의 주목할 만한 과학자’ 중 한 명으로 선정되어 인터뷰를 진행하였다. Q. 한국에서는 학계와 산업계 간의 협력이 다른 여러 나라, 특히 미국과 어떻게 다른가요? 그리고 이러한 차이가 연구자들에게 어떤 긍정적인 영향을 미치나요? 한국에서는 기업과 학계가 서로 긴밀하게 협력하는 문화가 가장 큰 강점입니다. 다른 나라에서는 보통 학계와 산업계간 일방적인 이동 및 연구가 많지만, 한국에서는 많은 연구자들이 산업계에서 필요로 하는 다양한 문제에 대해서 자유롭게 논의하며, 함께 연구하고 있습니다. 이 덕분에 연구개발 분야의 연구자들은 더 안정된 환경에서 창의적으로 일할 수 있게 됩니다. Q. 현재 진행하고 계신 연구는 어떤 것들이신가요? 앞으로 새롭게 연구하고 싶거나 관심을 가지고 계신 분야, 앞으로의 개인적인 목표가 있을지 궁금합니다. 저는 서강대학교에서 영상처리 기술(video and image-processing technologies)를 개발하고 있으며, 이 기술은 차세대 디스플레이를 위한 성능과 전력 효율을 최적화하기 위해 인공지능 (AI)를 더욱 많이 활용하고 있습니다. 저희 연구실은 super-resolution을 이용하여 image reconstruction 기법을 연구하고 있으며, 이 기법은 인공지능을 사용해서 저해상도 이미지를 고해상도 품질의 영상으로 변환하면서도 전력 소비를 낮추는 데 중점을 두고 있습니다. 또한 VR 및 AR 장치의 디스플레이 성능을 개선하기 위해 연구하고 있는데, 이 장치들은 사용자의 눈에 매우 가까이 위치하기 때문에 이미지가 왜곡되거나 초고해상도로 표시될 필요가 있습니다. 이를 해결하기 위해 인공지능 기술을 적용해 이미지 품질과 효율성을 동시에 높이는 방법을 구현하고 있습니다. 이러한 접근 방식은 사용자 경험에 직접적인 긍정적 영향을 미칠 수 있습니다. 예를 들어, 더 선명하고 왜곡 없는 이미지를 통해 사용자에게 더욱 몰입감 있는 경험을 제공할 수 있으며, 장시간 사용 시에도 눈의 피로를 줄여줄 수 있습니다. Q. VR 및 AR 디스플레이 분야 외에 관심을 갖고 계신 디스플레이 관련 연구 분야가 있으신가요? 또한, 관심을 가지고 계신 기술이 상용화되면 어떤 이점을 기대할 수 있을지 궁금합니다. 스트레쳐블(stretchable), 폴더블(foldable), 롤러블(rollable) 디스플레이에서 발생하는 이미지 품질 문제를 해결하는 영상처리 기술을 연구하고 있습니다. 해당 장치를 개발할 때 주요한 과제는 디스플레이가 늘어날 때 픽셀 사이의 간격이 증가하여 해당 영역의 밝기가 감소한다는 것입니다. 단위 면적당 밝기의 변화를 자동으로 감지하고, 해당 영역의 픽셀 밝기를 적응적으로 조정하여 일관된 이미지 품질을 유지하는 기술을 개발하고 있습니다. Q. 한국에서 과학자로서 경력을 쌓는 데 있어 젊은 연구자들이 직면하는 주요 도전과 이를 해결하기 위한 방안은 무엇이라고 생각하시나요? 한국은 과학자들에게 점점 더 경쟁적인 환경으로 변화되고 있습니다. 특히 초기 경력의 많은 연구자들이 좋은 연구 환경에서 자리를 잡기 위해, 학계에서는 더 많은 정규직 기회를 늘려야 한다고 생각합니다. 또한 젊은 연구자들이 다양한 국내외 학술대회 등에서 자신의 연구를 알릴 수 있도록 지원해주어야 하며, 한국의 여성 연구자들을 더 많이 조명될 수 있는 다양한 프로그램이 필요하다고 생각됩니다. 출처 – https://www.nature.com/articles/d41586-024-02687-w
2024.08.27
김홍석 교수 연구팀, 에너지 분야 국제 저명 저널 IEEE Transactions on Sustainable Energy 논문 게재 ▲(왼쪽부터) 송근주 석박통합과정, 김민수 박사, 김홍석 교수 본교 전자공학과 송근주 석박사통합과정과 김민수 박사(지도교수 김홍석)의 논문이 국제 에너지 분야 최상위 저널인 IEEE Transactions on Sustainable Energy (2023년 발표 기준 JCR Impact Factor 8.6, 상위 8%)에 게재 승인되었다. 해당 논문은 최근 전력 시스템에서의 신재생 에너지 투입을 위한 새로운 형태의 다중 태양광 발전량 예측 기법에 관한 것이다. 제안하는 기법은 특히 국가 단위의 넓은 지역에 걸쳐 분포해 있는 태양광 발전소들에 대하여 단일 모델로도 효율적이며 정확한 예측을 수행한다. 일반적으로 대규모 형태의 태양광 발전소를 학습하기 위해서는 대용량의 GPU 메모리가 확보되어야 하며, 이는 상황에 따라 out of memory (OOM) 에러로 이어져 학습 비용이 크게 상승하는 문제가 있었다. 따라서 이를 해결하기 위해 해당 논문에서는 그래프 신경망 기반의 Random Coarse Graph Attention과 Probabilistic autoregressive LSTM 모델을 제안 및 결합하여 약 1600개 이상의 태양광 발전소를 동시에 학습 시에도 최대 57.3%의 낮은 GPU 메모리 사용량을 보였으며, 시공간 학습을 통해 최대 11.7% 향상된 예측 정확도를 달성하였다. 또한 실제 상황에서 통신 오류, 센서 고장 등으로 발생하는 결측 데이터 상황을 고려하여 시공간적 보간법을 제안해 결측이 극심한 상황(최대 90%의 결측률)에서도 비교군 대비 강인한 예측 성능을 보였다. 제안된 다중 태양광 발전량 예측 기법인 AnyCast는 가상발전소 (VPP) 구성 등 배전망 운영에 효과적으로 기여할 수 있으며, 재생에너지가 고려된 최적 조류 계산 등 다양한 전력망 운영에 포괄적인 적용이 가능할 것으로 기대된다. 논문명: Graph-based Large Scale Probabilistic PV Power Forecasting Insensitive to Space-Time Missing Data저널명: IEEE Transacations on Sustainable Energy (IF 8.6, JCR 상위 8%)저자명: 송근주 (서강대학교), 김민수 (서강대학교), 김홍석 (서강대학교)
2024.08.20
류성주 교수 연구팀, Exynos AI Challenger 최우수상 수상 ▲(왼쪽부터) 조교찬, 박정규 학사과정, 김상연 석박통합과정, 류성주 교수 본교 전자공학과 학부과정 조규찬(4학년, 석박사통합과정 입학 예정), 박정규(4학년) 학생과 석박사통합과정 김상연 학생(지도교수 류성주)이 삼성전자 S.LSI 사업부에서 주최한 제 1회 Exynos AI Challenger 공모전에서 최우수상을 수상했다. 본 공모전은 200만 원 상당의 엑시노스 레퍼런스 디바이스(ERD)를 제공받아 ENN SDK(Exynos Neural Network Software Development Kit) 개발 환경에서 온디바이스(On-device) AI/ML 모델을 생성하고 적용하는 대회이며, 2023년 11월부터 2024년 5월까지 진행되었다. 류성주 교수 연구팀 학생들은 엑시노스 온디바이스 환경에서 경량화된 딥러닝 모델을 활용한 키워드 검출(keyword spotting) 시스템을 구현하였다. 김상연 석박사통합과정 학생은 "이번 대회를 통해 엑시노스 에코시스템의 구축 목적과 진행 경과를 알게 되었으며, 현재 진행 중인 저지연 및 저전력을 위한 온디바이스 키워드 검출 시스템을 만들고 검증하는 연구에 큰 도움이 될 것 같다."라고 소감을 전했다.
2024.08.06
전자공학과 남창주 교수, 2024년 과학기술정보통신부·한국연구재단 기초연구실 지원사업 선정 ▲ (왼쪽부터) 전자공학과 남창주 교수, 연세대 남석인 교수, 연세대 김민구 교수, 경희대 김상현 교수 본교 전자공학과 남창주 교수, 연세대학교 남석인 교수(사회복지학과), 김민구 교수(의학공학교실), 경희대학교 김상현 교수(기계공학과)로 이루어진 공동연구팀이 과학기술정보통신부와 한국연구재단이 주관하는 2024년도 기초연구실 지원사업의 개척형에 신규 선정되었다. 연구 과제명은 「초고령 사회 일자리 혁신 : 노인 맞춤형 다중감각 인터페이스를 통한 로봇 공유제어 기술」로, 연구 기간은 2024년 8월부터 2027년 4월까지 2년 9개월이고 총 13.75억 원(연평균 5억 원)의 연구비를 지원받는다. 우리나라는 2025년부터 초고령 사회로 진입할 정도로 노인 인구가 급증하고 있다. 하지만, 풍부한 현업 경험과 노하우를 가진 “파워 시니어”들에게 양질의 일자리를 제공할 준비는 되어 있지 않다. 대부분의 일자리가 단기·단순 노무직 중심의 저임금 일자리이다. 이런 노인 일자리 문제는 노인 문제로도 이어진다. 심각한 노인 빈곤율과 자살률(모두 OECD 1위)은 우리 사회 불행한 노인의 현실을 단적으로 보여준다. 노령화와 동시에 급감하는 출생률은, 생산인구 부족이라는 시급한 노동 시장의 문제도 야기한다. 이번 연구는 노인의 원격 근로라는 새로운 기술 영역을 개척하는 사회 문제 해결형 R&D이다. 노인 일자리, 노인 우울감, 생산인구 부족이라는 우리 사회의 난제를 로봇·AI 기술로 해결해보고자 하는 연구자들이 뜻을 모았다. 노인 맞춤형 작업 인터페이스를 통해 노인과 협업하여 작업을 계획하고 실행하는 로봇 플래닝 및 제어 기술을 개발하는 것을 목표로 한다. 세부적으로는, 노인의 인지 및 신체적 특징을 바탕으로 한 새로운 사용자 인터페이스, 노인의 언어·행동적 작업 지시 및 작업 관련 정보를 이용해 로봇의 작업 및 모션 계획을 수립하는 플래닝 기술, 노인의 개입을 중재하고 제어 입력의 불안정성과 불연속성을 최소화하는 공유제어 기술, 다양한 작업 정보를 제공하기 위한 로봇의 멀티모달 센싱 기술을 개발한다. 노인의 의견을 주도적으로 반영하여 수요자 중심의 지속 가능한 기술을 개발하기 위해 노인복지 전문가인 남석인 교수와 리빙랩을 운영한다. 기술 수용 과정에서 노인의 심리사회적 변화를 다차원적으로 측정하고, 개발된 기술이 기존 노인 일자리의 대안이 될 수 있는지 확인하는 사회과학 연구도 병행하는 초학제 융합 연구이다. 연구 책임자인 남창주 교수는 “노인을 돌봄의 대상으로만 바라본 기존의 로봇 연구에서 벗어나, 노인을 기술의 주체적인 사용자이자 사회에 기여하는 생산적 집단으로 변모시키는 연구를 통해 노인을 행복한 사회 구성원으로 재탄생시키고자 하는 연구자들의 강한 의지가 모였다”면서, “이번 연구를 통해 보다 다양한 사회 구성원들이 스마트폰을 사용하듯 로봇 기술을 쉽게 활용할 수 있게 되길 기대하며, 초고령·저출생 사회의 노인·노동력 문제를 완화하는 데 기여하고 싶다”는 포부를 밝혔다. 또한, “우수한 연구 역량을 보유한 연구자들과 함께 공학 기술과 노인 복지 연구가 융합된 초학제 연구를 수행할 수 있게 되어 매우 기쁘다”라는 소감도 밝혔다. 한편, 기초연구실 지원사업은 특정 연구주제 중심의 소규모 기초연구 그룹을 지원하여 국가 기초연구 역량 강화를 도모하는 집단연구사업이다. 특히, 본 과제의 유형인 개척형은 국내에서 거의 시도되지 않은 새로운 분야의 창의적·도전적 연구 지원을 통해 역량 있는 젊은 연구자의 성장을 지원하는 것을 목적으로 한다.
2024.08.01